
Solar Energy Prediction: An International Contest to Initiate1

Interdisciplinary Research on Compelling Meteorological2

Problems3

Amy McGovern ∗

School of Computer Science, University of Oklahoma, Norman, Oklahoma

4

David John Gagne II

School of Meteorology, University of Oklahoma, Norman, Oklahoma

5

Lucas Eustaquio

Niddel

6

Gilberto Titericz Junior

Petrobras

7

Benjamin Lazorthes

Blia Solutions, France

8

Owen Zhang

zhonghua.zhang2006@gmail.com

9

Gilles Louppe

Department of EE&CS, University of Liege, Belgium

10

1



Generated using version 3.2 of the official AMS LATEX template

Peter Prettenhofer

DataRobot, peter@datarobot.com

11

Jeffrey Basara

School of Meteorology, University of Oklahoma, Norman, Oklahoma

12

Thomas M. Hamill

NOAA/ESRL Physical Sciences Division

13

David Margolin

EarthRisk Technologies and Solutions

14

∗Corresponding author address: Amy McGovern 110 W. Boyd St., Norman, OK 73019

E-mail: amcgovern@ou.edu

2



ABSTRACT15

As meteorological observing systems and models grow in complexity and number, the size of16

the data becomes overwhelming for humans to analyze using traditional techniques. Com-17

puter scientists, and specifically machine learning and data mining researchers, are develop-18

ing frameworks for analyzing big data. The AMS Committee on Artificial Intelligence and19

its Applications to Environmental Science aims to bring AI researchers and environmental20

scientists together to increase the synergy between the two. The AI committee has spon-21

sored 4 previous contests on a variety of meteorological problems including wind energy,22

storm classification, winter hydrometeor classification, and air pollution, with the goal of23

bringing together the two fields of research. Although these were successful, the audience24

was limited to existing environmental science researchers (usually 10-20 teams of people25

primarily within the AMS community). For the 2013/14 contest, we expanded to a global26

audience by focusing on the compelling problem of solar energy prediction and by having27

the established forum Kaggle host our contest. Using this forum, we had over 160 teams28

from all around the world participate. Improved solar energy forecasting is a necessary com-29

ponent of making solar energy a viable alternative power source. This paper summarizes30

our experiences in the 2013/14 contest, discusses the data in detail, and presents the win-31

ning prediction methods. The contest data come from the NOAA/ESRL Global Ensemble32

Forecasting System Reforecast Version 2 and the Oklahoma Mesonet with sponsorship from33

EarthRisk Technologies. All winning methods utilized gradient boosted regression trees but34

differed in parameter choices and interpolation methods.35
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1. Introduction36

The increasing size and complexity of meteorological observational data and model out-37

put has demanded more investigation into how best to utilize this wealth of data. The chal-38

lenge of analyzing large data volumes is not unique to meteorology. Computer scientists,39

and specifically machine learning and data mining researchers, are developing frameworks40

for analyzing big data for a range of applications. The AMS Committee on Artificial In-41

telligence and Its Applications to Environmental Science aims to bring AI researchers and42

environmental scientists together to increase the synergy between the two fields. The AI43

Committee has sponsored 4 previous contests on a variety of meteorological problems in-44

cluding wind energy, air pollution, winter hydrometeor classification, and storm classification45

(Lakshmanan et al. 2010) with the goal of bringing together the two fields of research to46

discuss a common challenge from multiple perspectives. The winners of the past contests47

presented in a special session at the AMS Annual Meeting that featured both the results and48

discussions of the various techniques used as well as how they could be applied to similar49

problems. While the discussions had been fruitful and attracted people from many different50

backgrounds, participation in the contests declined from year to year. For this past year’s51

contest, we made significant changes to the contest format in order to increase participation52

and reach a much wider audience.53

Our goal for 2013/14 contest was to determine which approach produces the best total54

daily solar energy forecast. We changed three key features of the contest organization. First,55

we used the year prior to the contest to gather and format a larger and more complex dataset56

for predictions. Second, we hosted the contest website on Kaggle, a popular platform for57

AI contests with a worldwide audience. Third, we extended the time window of the contest58

from just the fall to July through November and allowed contestants to submit and evaluate59

entries every day throughout the period. These changes resulted in an order of magnitude60

increase in the number of participants and a broadening of the participant pool from those61

in the existing meteorological community to scientists and engineers around the world.62
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2. Data63

The forecast data used in this study came from the second-generation NCEP Global64

Ensemble Forecast System (GEFS) reforecast set described in Hamill et al. (2013). This65

data consists of an 11-member global ensemble initialized at 00 UTC every day from 1985 to66

present. Forecasts extend to +16 days lead time. The modeling system closely replicates the67

GEFS as it was implemented in 2012. The initial conditions for most of the data set used68

the Climate Forecast System Reanalysis (CFSR; Saha and Coauthors 2010) for the control69

initial condition and the ensemble transform with rescaling (Wei et al. 2008) for generating70

perturbed initial conditions. Forecast data was archived every 3 h to +72 h lead time, and71

every 6 h thereafter. More details are available in Hamill et al. (2013).72

The Oklahoma Mesonet is a permanent mesoscale surface observing network of 120 re-73

mote, meteorological stations across Oklahoma (Brock et al. 1995; McPherson et al. 2007).74

The Mesonet represents a partnership of Oklahoma State University and the University of75

Oklahoma and managed by the Oklahoma Climatological Survey (OCS). Each station mea-76

sures more than 20 environmental variables, including wind at 2 and 10 m, air temperature77

at 1.5 and 9 m, relative humidity, rainfall, pressure, solar radiation, and soil temperature78

and moisture at various depths. All sensors are mounted on or near a 10-m tower supported79

by three guy wires and powered via solar energy.80

Downwelling, global solar radiation is measured by the LI-COR LI-200 pyranometer81

mounted on a boom that extends southward from the tower. Even so, measurements of solar82

radiation during early morning and late afternoon evening may be sensitive to obstructions83

to the east and west of the station. All solar radiation data are collected and transmitted to84

a central point every 5 minutes where (1) sensor-specific calibration coefficients are applied85

and (2) the data are quality controlled via automated algorithms and human inspection prior86

to distribution and archival (Shafer et al. 2000; McPherson et al. 2007).87

The locations of the GEFS and Mesonet stations are shown in Fig. 1. Due to the88

coarseness of the GEFS grid relative to the Mesonet station spacing, contestants were pro-89
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vided with additional grid points well outside the Oklahoma state boundaries so that any90

interpolation techniques would not experience any interference from edge conditions.91

3. Contest Setup92

The contest was hosted by Kaggle, a company that developed a platform for hosting data93

mining competitions in addition to providing modeling support for a variety of Fortune 50094

companies. For each competition hosted on the site, Kaggle provides pages for describing95

the competition and the rules, downloading the data, displaying real-time rankings of the96

participants, and discussions about the contests. The site also automatically manages sub-97

mission of contestant entries and evaluation of the predictions. The continuous stream of98

contests on Kaggle has led to the development of a large community of contest participants99

who come from a wide range of backgrounds and from around the world. For these services100

and for access to its large user community, Kaggle charges a fee to companies who wish to101

host their contest through the site, but Kaggle also hosts research competitions for smaller102

contests organized by academic groups for no fee. EarthRisk Technologies sponsored the103

contest and provided the prize money.104

For this contest, a small spatial subset of the 11-member ensemble data was extracted105

over Oklahoma and surrounding regions, consisting of forecasts at the +12, +15, +18, +21,106

and +24-hour lead times. To be coincident with the observational data, the reforecast data107

was extracted only back to 1994. These pervaded the forecast training data for the contest’s108

1-day solar-energy predictions. The forecast variables saved were mean sea-level pressure,109

skin and 2-meter temperature, 2-meter specific humidity, daily maximum and minimum 2-110

meter temperature, total precipitation in the last 3 hours, total column precipitable water,111

total column integrated condensate, total cloud cover, downward and upward short- and112

long-wave radiation flux at the surface, and upward long-wave radiation flux at the top of113

the atmosphere.114
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The data were split into training, public testing, and private testing sets. The training115

set timeframe extended from 1 January 1994 to 31 December 2007; the public testing set116

ranged from 1 January 2008 to 31 December 2009, and the private testing set ranged from117

1 January 2010 to 30 November 2012. Teams could evaluate their predictions on the public118

testing set up to 5 times per day and optimize their algorithm based on the evaluation score.119

The final ranking of the teams was determined from the private testing set results, and the120

scores were not revealed until the contest concluded. Mean absolute error over all stations121

and days was chosen as the evaluation metric because it does not penalize extreme forecasts122

as greatly as root mean squared error.123

In addition to the contest data, participants also received the results and source code for124

three benchmark methods that indicated how random selection and interpolation methods125

would perform on the dataset. The random normal benchmark input random numbers126

sampled from a normal distribution with a mean of 16 MJ m−2 and a standard deviation of127

8 MJ m−2. The other two benchmarks interpolated the GEFS mean total daily incoming128

solar radiation to the Mesonet sites using nonlinear approaches. One method fit a set129

of scaled Gaussian mixture models to the GEFS data with an expectation-maximization130

iterative approach similar to the method of Lakshmanan and Kain (2010). It produced a131

smoothed field that could be evaluated at any point in the domain and had an MAE of132

4.02 MJ m−2. The second approach was to use Catmull-Rom cubic splines to interpolate133

the nearest four grid points to each Mesonet site. The splines performed significantly better134

than the Gaussian mixture model approach with an MAE of 2.61 MJ m−2 although they135

did have a tendency to have larger extremes than the observed data. Once the spline code136

was provided to the contestants, 118 of the 160 teams were able to either equal or improve137

on its performance.138
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4. Gradient Boosted Regression Trees139

One of the surprising outcomes of the contest was that all of the winning methods made140

use of the same regression technique, Gradient Boosted Regression Trees (GBRT) (Friedman141

2001). GBRT robustly models the (volatile) daily solar energy output from spatio-temporal142

input variables. For this data, GBRT proved to be an accurate and effective off-the-shelf143

regression technique because i) it natively handles data of mixed type, ii) it is robust to144

outliers (through robust loss functions) and iii) it is non-parametric and has high predictive145

power.146

Mathematically, GBRT is a generalization of boosting (Freund and Schapire 1995) to147

arbitrary differentiable loss functions L. The method considers additive models of the form148

Fm(x) =
M∑

m=1

γmhm(x) (1)

where hm(x) are basis functions called weak learners. In GBRT, weak learners are regression149

trees (Breiman et al. 1984) that are learned sequentially using a forward stagewise procedure.150

More specifically, at each stage, hm(x) is chosen to minimize the loss function L via steepest151

descent (using the negative gradient of L at the current model Fm−1) while the step length152

γm is chosen using line search.153

5. 1st place: Eustaquio and Titericz154

The winning approach creatively combined the predictions from models that focused on155

different aspects of the input data as well as information about the spatial and temporal156

variability. At each Mesonet site, 13 GBRT models were trained. The first 11 models used157

input data from each GEFS ensemble member, and the other two used the medians and158

maximums of the GEFS variable values over all ensemble members. The models trained on159

each member incorporated data from the 4 GEFS grid points that surrounded each Mesonet160

site. The 5 intraday values for all 15 input weather variables were used from the 4 nearest161
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grid points, resulting in 300 input values per day. Additional descriptive variables (latitude162

and longitude from the GEFS and Mesonet, the station ID, and the distances between the163

Mesonet site and GEFS points) were also included. The aggregated models were trained164

on either the median or the maximum value of the ensemble variables and on the sum of165

the intraday values. All of the models were trained and optimized with 3 fold continuous166

cross-validation over consecutive 4 year periods. The Python implementation of the GBRT167

was used.168

Once the individual models had been trained and once each produced solar energy pre-169

dictions over the training time period, two optimized weighted ensembles were produced to170

create a consensus solar energy prediction for each site. The forecasts for each station were171

combined using the Nelder and Mead (1965) non-linear optimization algorithm to minimize172

the MAE of the consensus prediction. A second optimized ensemble was created by optimally173

weighting the predictions at nearby Mesonet sites to match the predictions at a particular174

site. The two weighted ensemble predictions were then simply averaged and then multiplied175

by 1.01 as a final bias correction. All of the models took 12 hours to run and resulted in an176

error of 2.11 MJ m−2. For comparison, the mean daily production of all Mesonet sites was177

16.7 MJ m−2, resulting in a mean global error of 13%. It should be noted that no manual178

feature engineering was performed; the GBRT and the optimization routines did all of the179

feature selection and distance weighting on its own.180

6. 2nd place: Lazorthes181

As is often the case in predictive analytics, data preparation was the most important step182

in this project. Since the localization of the mesonet stations did not coincide exactly with183

the position of the GEFS nodes (see Figure 2), some transformations were necessary in the184

training and testing datasets. For each of the 98 Mesonet stations, a linear interpolation of185

the four nearest GEFS points (weighted by the distance) was carried out using the following186
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formula.187

VMesonet =

∑4
i=1wiVGEFSi∑4

i=1wi

(2)

wi = max (0, 1 − di) and di was the Euclidian distances from the mesonet to the near GEFS188

nodes (assuming that the smallest distance between 2 GEFS is equal to 1).189

Fifteen meteorological variables forecasted each day at 00 UTC for 5 different hours (at 12,190

15, 18, 21, and 00 UTC the following day) were provided. We used these 75 weather features191

without any prior selection. Additional features were created by spatially or temporally192

averaging the original 75 weather variables. In addition, the elevation, the latitude and193

the longitude of the Mesonet stations and the month of the observation. At the end, 128194

explanatory variables were defined.195

All the data from the 98 Mesonet stations were gathered to obtain a single training set, a196

single testing set, and finally a single model for all stations. Some trials have been performed197

with separated datasets for each station but they never gave more accurate predictions.198

Consequently, the training dataset had 501,074 rows and the testing dataset had 176,068199

rows.200

The best accuracy was achieved with GBRT, using the implementation directly available201

in R (gbm package) with the mean absolute error (MAE). Random Forests (Breiman 2001)202

were also evaluated but were not retained because they were less accurate.203

For each of the boosted trees, we used the following training settings: Mean Absolute204

Error (distribution = “laplace”), number of expansions between 2000 and 3000 (n.trees =205

2000 or 3000), depth of the trees between 6 or 8 (interaction.depth = 6, 7 or 8), a learning206

rate of 0.05 (shrinkage = 0.05), an out of the bag proportion: 30% (bag.fraction = 0.7). An207

ensemble of 12 distinct gradient boosted regression trees improved the accuracy by reducing208

the risks of overfitting.209

The mean absolute error of the 2nd place model was 2,128,116 J/m2, as evaluated on210

the private test set. Knowing that the average daily incoming solar energy of the stations in211

the Mesonet is around 16,500,000 J/m2, it therefore corresponds to a mean absolute error212
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of about 12.8%.213

Some variables clearly appeared to be particularly important: the downward short-wave214

radiative flux average at the surface (dswrf) and the precipitable water over the entire depth215

of the atmosphere (pwat). Even if the other variables are less influential, they contribute to216

improve the global accuracy of the model. Table 1 gives the top 10 most important variables217

as ranked by their perfect of influence.218

Fig. 3 is a 3D graphical representation of the model. The shape of the curve is typical219

of models obtained by combining several regression trees and shows the dependence of the220

model on incoming solar radiation and precipitable water and how the two terms interact.221

As physically expected, increased precipitable water results in lower observed solar energy222

for a given amount of incoming solar radiation.223

7. 3rd place: Zhang224

The third place approach also used GBRTs, with the differences coming in the data pre-225

processing for training. Before training, the 11 forecast members were averaged to minimize226

the training data for efficiency purposes. Zhang trained 2 GBRTs, each on slightly different227

data. The first was trained on the data from the GEFS model point closest to the prediction228

point and the second was trained on a weighted average of the nearest 4 GEFS points. The229

data at each model point p was distance-weighted by the longitude (φ) and latitude (λ)230

distance to each Mesonet site (s) according to Eq 3.231

wp =
1

(0.1 +
√

(φp − φs)2 + (λp − λs)2)
(3)

Both models were trained on all 75 of the available features. Zhang also added features for232

the day of the year and the longitude and latitude and introduced a new feature called “daily233

differences in downward shortwave solar radiation (∆Sd).” This feature was defined in Eq.234

9



4 as a weighted sum of the downward shortwave solar radiation for each available hour (Sh):235

∆Sd = −0.5Sh(12) − 0.1Sh(15) + Sh(18) + Sh(21) + 0.8Sh(24) (4)

The final prediction was a weighted vote of the two GBRTs. The weights were determined236

using cross-validation. Denoting the GBRT trained on the nearest data points as GBRTn237

and the one trained on the weighted average as GBRTwa, the final prediction for a Mesonet238

site s was239

final(p) =
0.5 ∗GBRTn(s) +GBRTwa(s)

1.5
. (5)

8. Student Winner: Louppe and Prettenhofer240

Our approach is similar in principle to the first place winner (Eustaquio and Titericz) but241

makes use of robust regression techniques to take uncertainty into account. Our approach242

comprises two steps: First, we use a non-linear interpolation technique, Gaussian Process243

regression (also known as Kriging in Geostatistics), to interpolate the coarse GEFS grid to244

the location of the solar energy production facilities. Second, we use GBRT to predict the245

daily solar energy output based on the interpolated model and additional spatio-temporal246

features.247

Forecast variables measured at the GEFS locations are interpolated non-linearly onto the248

Mesonet stations using Gaussian Processes (Rasmussen and Williams 2005). More specif-249

ically, for a given day and a given time period, a Gaussian Process models the value of a250

given forecast variable (e.g., temperature, humidity, etc) with respect to the location of a251

station. Uncertainty in the forecast variables is taken into account by modeling the average252

value over the 11 members of the ensemble, where uncertainty in the ensemble measurements253

is specified as confidence intervals through the nugget parameter of the Gaussian Process.254

Using this technique, 75 forecast variables were interpolated per day in the dataset.255

To enhance our final model, spatio-temporal variables were engineered and added to the256

75 variables, including:257
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• Solar features (delta between sunrise and sunset)258

• Temporal features (day of year, month of year)259

• Spatial features (latitude, longitude, elevation)260

• Non-linear combinations of measurement estimates261

• Daily mean estimates262

• Variance of the measurement estimates, as produced by the Gaussian Processes263

The best accuracy was achieved with GBRT. We used the least absolute deviation loss264

function for robustness and optimized all hyper-parameters on an internal learning set. To265

further decrease variance of the model, several GBRT instances were built (using different266

random seeds) and their predictions averaged to form the final predictions. In our opinion,267

the ability of GBRT to handle outliers in the outputs by using robust loss functions is crucial268

in this context, due to the volatile nature of solar energy output. Our pipeline was built269

on top of the Scikit-Learn machine learning library (Pedregosa et al. 2011), offering efficient270

implementations for both Gaussian Processes and GBRT.271

We evaluated the approach on a dataset of daily solar energy measurements from 98272

stations in Oklahoma. The results show a relative improvement of 17.17% and 46.19% over273

the baselines, Spline Interpolation and Gaussian Mixture Models, respectively.274

9. Error Analysis275

The top contestant methods exhibited similar monthly error characteristics. The monthly276

mean absolute error for all stations (Fig. 4) follows the average magnitude of solar energy by277

month with the smallest error in December and January then increasing to the highest error278

in May and June. All of the contestants have very similar monthly errors with Eustaquio279

and Titericz consistently having the lowest error. The monthly mean error shows a very280
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small amount of bias relative to the magnitude of the mean absolute error. Each contestant281

follows a similar monthly trend in the mean error. Eustaquio and Titericz have a consistently282

higher mean error than the other models, which is due to the multiplicative factor applied283

to their results.284

Analysis of the station error shows the effects of geography on the predictions. For all285

contestants, eastern Oklahoma featured generally higher mean absolute errors compared to286

western Oklahoma with the Oklahoma Panhandle featuring some of the lowest errors (Fig.287

5). This solar error distribution mirrors the annual precipitation distribution in Oklahoma.288

Since the presence of clouds and rain has a large impact on solar energy amounts, and since289

precipitation location and duration are challenging to predict, this factor is likely a large290

component of the increased error in eastern Oklahoma. A subset of the stations buck the291

geographical trend, and analysis of the contest observations shows that some of these stations292

recorded extended periods of missing data that were filled with the mean solar radiation value293

for that site. Only a few stations had these discrepancies, so it did not have a significant294

impact on the overall contest results.295

A bootstrap statistical analysis of the forecast errors was performed on the top 4 con-296

testants to determine if there were statistically significant differences in their forecasts. The297

confidence intervals (Table 2) indicated large amounts of overlap and no statistically signif-298

icant differences in the top 4 contestants. The scores of the top 7 contestants fall within299

the confidence interval of the first place winner, and the top 16 contestants fall within the300

confidence interval of the 4th place winner.301

10. Discussion and Lessons Learned302

By hosting the forecasting challenge on Kaggle, we dramatically increased the partic-303

ipation and the diversity of the participants from prior years. This diversity includes a304

significant increase in the international participation as well as participation from people305
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outside of meteorology. This broader participation was valuable in highlighting meteoro-306

logical applications for machine learning and data mining. However, it also provided some307

challenges from the perspective of running a contest with a final session at an AMS annual308

meeting. Because the winners were largely international participants, they were not able309

to travel to AMS. Although most of the winners were able to send a pre-recorded video of310

their talks and there was an informative discussion in the AMS session, future contests could311

benefit from better use of video technology to engage the winners in discussions in real-time.312

The data, evaluation system, and results from the contest have broader applicability for313

meteorologists in the renewable energy forecasting sector. The contest results showcased a314

machine learning method, Gradient Boosted Regression Trees (GBRT), that has not been315

used extensively in the atmospheric science community at this point. Optimized GBRTs316

have been shown to provide superior performance on this dataset compared to random317

forests, linear regressions, and neural networks, which were all used by other contestants.318

In addition to desirable performance characteristics, GBRTs use different optimization func-319

tions depending on the problem, and can be tuned for both computational and accuracy320

constraints. Due to its decision tree roots, GBRT can also be used to extract information321

about its input variables through variable influence rankings and partial dependence plots.322

We hope that the results of this contest and the availability of GBRT in both Python and323

R open-source machine learning libraries encourage the atmospheric science community to324

apply the algorithm to their existing datasets.325

In the spirit of open data and reproducibility, the contest website1, data, and evaluation326

system will continue to be available to anyone wishing to compare their approaches against327

the contest winners. While new submissions will not appear on the leaderboard, people are328

still invited to compare their algorithm and discuss new findings on the contest forum.329

1http://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest
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Table 1. Variable influence rankings for the 2nd place gradient boosting algorithm.
Name Percent

dswrf (21 UTC) 20.9%
dswrf (18 UTC) 13.1%
dswrf (00 UTC) 11.5%
dswrf (15 UTC) 4.2 %
pwat (21 UTC) 3.8 %
pwat (15 UTC) 3.7 %
pwat (18 UTC) 3.6 %
Month 3.5 %
pwat (00 UTC) 3 %
pwat (12 UTC) 2 %
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Table 2. 95% bootstrap confidence intervals for each of the top 4 contestants.
Contestant 95% Confidence Interval

(MJ m−2)

1. Eustaquio and Titericz (2.028, 2.180)
2. Lazorthes (2.044, 2.211)
3. Zhang (2.077, 2.224)
4. Louppe and Prettenhofer (2.082, 2.244)
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Fig. 1. Map of the grid points from the GEFS (blue) and the Oklahoma Mesonet station
sites (red) superimposed on a NASA Blue Marble satellite image background.
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Fig. 2. Data pre-processing to handle the Mesonet stations being on a different grid than
the GEFS model.
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Fig. 3. Partial dependence plot derived from a gradient boosting model.
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Fig. 4. Monthly mean absolute error and mean error for each of the top 4 contestants.
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Fig. 5. Mean absolute error at each Mesonet site for the top 4 contestants.
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